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Abstract

Multi-protocol label switching extends the IP destination-based routing protocols to provide new and scalable routing
capabilities in connectionless networks using relatively simple packet forwarding mechanisms. MPLS networks carry traffic
on virtual connections called label switched paths. This paper considers path selection and bandwidth allocation in MPLS
networks in order to optimize the network quality of service. The optimization is based upon the minimization of a non-linear
objective function which under light load simplifies to OSPF routing with link metrics equal to the link propagation delays.
The behavior under heavy load depends on the choice of certain parameters. It can essentially be made to minimize maximal
expected utilization, or to maximize minimal expected weighted slacks (both over all links). Under certain circumstances it
can be made to minimize the probability that a link has an instantaneous offered load larger than its transmission capacity.
We present a model of an MPLS network and an algorithm which optimally distributes the traffic among a set of active paths
and reserves a set of back-up paths for carrying the traffic of failed or congested paths. The algorithm is an improvement
of the well-known flow deviation non-linear programming method. The algorithm is applied to compute optimal LSPs for a
100-node network carrying a single traffic class. A link carrying some 1400 routes fails. The back-up paths are activated and
we compare the performance of the path sets before and after the back-up paths are deployed.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The Internet is becoming the ideal platform to support all forms of modern communications including
voice, data and multimedia transmissions. However, the standard IP routing protocols were developed on
the basis of a connectionless model where routing decisions are based on simple metrics such as delay
or hop count which leads to the selection of shortest path routes. Despite its ability to scale to very large
networks, this approach provides only rudimentary quality of service (QoS) capabilities which cannot
be used to provide scalable service level agreements for bandwidth intensive applications in modern
networks.
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Multi-protocol label switching (MPLS)[1] extends the IP destination-based routing protocols to provide
new and scalable routing capabilities. MPLS routing/switching is achieved by forwarding IP packets along
virtual connections called label switched paths (LSPs). LSPs are set up by a label distribution protocol
which uses the information contained in layer 3 routing tables. The LSPs form a logical network that is
layered on top of the physical network to provide connection-oriented processing above the connectionless
IP network.

This paper presents a model of flow optimization in MPLS networks. We address the following questions
related to the optimal distribution of traffic flows among LSPs in an MPLS network:

• How is the set of paths computed?
• How is a subset of the computed paths selected to carry the offered traffic?
• How is the traffic distributed among the selected paths?
• How useful are the remaining unselected paths as back-ups to be used in the event of traffic overload

and/or path failure?

We formulate the problem of finding an optimal set of LSPs and optimally allocating bandwidths to these
LSPs as a constrained non-linear programming problem (NLP) which minimizes an appropriate objective
function. In qualitative terms the goal is to find a set of LSPs and a set of target bandwidths for these LSPs
such that if the traffic forecasts are exact and all target bandwidths of LSPs are achieved, the system will
carry all the offered traffic, no link is too heavily utilized, and the carried load is appropriately distributed.

Several previous studies (see[2–4]and the references therein) have formulated the bandwidth allocation
problem in connectionless networks as an NLP using theM/M/1 formula as a penalty function to predict
the queueing delay on individual links, and a load balancing scheme is considered optimal if it minimizes
the total delay over the network. However, the delay in an Internet is limited by the drain time of buffers.
Furthermore, TCP congestion avoidance and random early discard (RED) schemes (see[5,6] and the
references therein) make it possible to have a very high sustained utilization on a link with simultaneously
only moderate packet loss and only moderate variability in buffer occupation. The use of anM/M/1
queueing delay in the penalty function is therefore highly suspect or even incorrect. The issue is not
only that theM/M/1 formula is poor in predicting actual queueing delay, but that queueing delay is
moderately insensitive to traffic intensity on a link. Mechanisms like weighted fair queueing (WFQ) and
class-based WFQ will make the queueing delay even more independent of link utilizations.

Our approach to the NLP and its solution has several novel aspects. First, we present a penalty function
that affords an appropriate representation of the actual quality of the network. Under light load our penalty
function simplifies to OSPF routing with link metrics equal to the link propagation delays. Under heavy
load the behavior depends on the choice of certain parameters. It can essentially be made to minimize
maximal expected utilization, or to maximize minimal expected weighted slacks (both over all links).
Under certain circumstances it can be made to minimize the probability that a link has an instantaneous
offered load larger than its transmission capacity.

Second, we present an efficient technique to solve the NLP. We have adapted an existing solution
technique, namely the flow deviation (FD) method[2–4] to minimize our objective function. Our im-
plementation of the FD algorithm differs from the standard method in that we identify a working set
of LSPs and re-distribute bandwidth over these LSPs until it becomes advantageous to admit new LSPs
to the working set. Appropriate numerical methods and data structures are used to achieve an efficient
implementation of the NLP solver. The advantage of our FD method is that, for the objective function we
use, our FD method is several times faster than the standard FD method.
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The FD algorithm computes optimal flows in connectionless networks: the objective function is a sum
of link penalty functions and the flow is optimally allocated among the links. Recently much attention
has been given to adapting optimization algorithms, which were originally developed for circuit switched
operations, so that they can be applied to logically fully connected networks which are layered on top
of connectionless networks. For example, the capacity routing algorithm (see[7] and the references
therein) discovers and capacitates optimal routes in multi-service connection-oriented networks. Here
the objective function expresses an end-to-end service measure such as the call blocking probability.
Bandwidth is optimally allocated among the discovered routes to form virtual path connections which
are either shared among the traffic classes (service integration) or separate VPCs are allocated to each
service class (service separation).

The rest of the paper is organized as follows.Section 2presents a model of an MPLS network, definitions
of feasible and optimal LSP bandwidth assignments, a description of the LSP design problem whose
solution yields an optimal set of LSPs and optimal LSP bandwidth assignments, and a description of a
penalty function which under light load simplifies to OSPF routing and depending on certain parameter
choices under heavy load optimizes one of a range of performance criteria.Section 3describes our
implementation of the FD algorithm to solve the LSP design problem.Section 4applies the FD method
to compute an optimal LSP set for a model of a 100-node network. The characteristics of the LSP set are
investigated. Our conclusions are presented inSection 5.

2. The model

Consider a communications network withN nodes andL links. LetN = {1,2, . . . , N} denote the
set of nodes and letL = {1,2, . . . , L} denote the set of links. The nodes represent the routers in the
MPLS-capable core of a network. Some nodes are connected by a link. The links are directed: each link
has a starting node and an ending node which are routers from the setN.

Each nodem ∈ N is both an ingress router and an egress router. Each node is an ingress router because
traffic from the non-MPLS-capable part of the network enters the MPLS network at that point. Each node
is an egress router because traffic to the non-MPLS-capable part of the network exits from the MPLS
network at that point.

Let d(m,n) denote the predicted demand (offered load) of traffic that wants to enter the MPLS network
at nodem and wants to exit at noden. We assume that the demandsd(m,n) and the link capacitiesbi are
such that a feasible solution exists. The definition of feasibility will be given shortly. If a feasible solution
does not exist then systematic drop (discard) of traffic is necessary, and it is an interesting question what
traffic needs to be dropped to minimize the damage. We consider only a single class of service.

2.1. Paths and path bandwidths

A pathP is a sequence of linksL1, L2, . . . , LHP whereHP ≥ 1 is thehop countof the pathP . In our
terminology a route and a path and an LSP are synonymous. No path traverses the same link or the same
node more than once. The algorithms that follow in later sections ensure that no paths contain cycles.
LetP denote the set of all such non-cycling paths. Since any pathP contains no cycles, the sequence of
links traversed by a pathP can be interpreted as a set denoted byLP . LetP(i) denote the set of paths that
utilize link i. LetP(m,n) denote the set of paths from nodem to n with m 	= n.
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2.2. Feasibility and optimality

Each pathP will be assigned atarget bandwidthBP ≥ 0. The goal is to select these target bandwidths
in an some sense optimal way. LetB = (BP )P∈P denote a set of target bandwidths.B is said to be
feasible if the following two constraints hold:

(1) For each pair of nodes(m, n)∑
P∈P(m,n)

BP = d(m,n), (1)

so that if the traffic forecastsd(m,n) are exact, and if the target bandwidth is achieved for all paths,
all of the offered traffic is carried.

(2) For each linki∑
P∈P(i)

BP ≤ bi, (2)

so that no link has an offered (target) load greater than its capacity.

We next choose a definition of optimality. Let

fi =
∑
P∈P(i)

BP ,

denote thetarget flowon link i and letρi = fi/bi denote thetarget utilizationof link i. Let si = bi − fi
denote thetarget slackon link i. Constraint(2) implies that all slacks must be non-negative.

Let Fi(fi) denote an objective function for linki when the link carries a flowfi . The LSP design
problemis specified in terms of the following constrained non-linear optimization problem: find a set of
feasible target bandwidthsBopt that minimizes the objective function

F(B) =
∑
i

Fi(fi), (3)

subject to the constraints(1) and (2)where the sum inEq. (3) is over linksi with bi > 0. Bopt is said
to provide an optimal solution toEq. (3). Note that the optimal link flowsfi are almost certainly unique
although the optimal bandwidthsB are usually not: this matter is discussed inAppendix A.

2.3. The objective function

The link penalty functionsFi(x) used in the LSP design problem have at least three roles. First, they
must to a reasonable degree represent an intuition of what constitutes a “good” load balancing scheme.
Second, they must be an efficient way of managing constraints, in particular the constraint that no link
carries a load larger than, or even close to, its bandwidth. Third, the link penalty functions must make it
possible to efficiently find an optimal solution to the LSP design problem.

The FD algorithm requires that the link penalty functionsFi(x) be increasing and convex on [0, bi)with
limx↑biFi(x) = +∞. The latter requirement necessitates a minor change to the definition of feasibility:
a solution is said to be feasible iffi < bi (strict inequality) on all linksi. It is also convenient to make a
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slightly stronger demand on the functionsFi(x) and require that eachFi(x) be “strongly monotone” on
the interval [0, bi) so that the objective functions are non-negative on [0, bi) and their derivatives with
respect to flow are positive on(0, bi).

Previous studies of the FD algorithm[2–4] used

Fi(x) = Mi

x

bi − x
, (4)

as a link penalty function. If we assume that the offered load to each linki is a Poisson process of packet
arrivals and that packets have independent, identically distributed sizes with exponential distribution and
averageMi , and that there is an infinite buffer, and that the resulting utilization of the link isx/bi , then
the objective function(4) is the product of the flowx and the average delay (waiting and service both
included, but propagation delay excluded). With theM/M/1 assumptions above, the sum of the link
penalty functions is a measure of the average total network delay.

However, in the modern Internet with TCP, and RED and all its variations, it is possible to have very
highly utilized links (utilization practically one) and still low delay and low loss in the buffer: all delay
is moved to the edge of the network. The same holds for example for ATM with ABR, in particular the
ER version of ABR.Eq. (4)is probably no longer a suitable link penalty function. Given these concerns,
we present a link penalty function with properties which make it suitable for use in an objective function
whose minimization will yield routes and bandwidths that correspond closely to the optimal operation of
a modern Internet. Our choice of link penalty function is

Fi(x) = cix + ησi

(
σi

bi − x

)ν
, (5)

where linki has a bandwidthbi ≥ 0, a weight factorσi > 0 with η > 0,ν > 1 andFi(x) = ∞ if x ≥ bi .
The factorci is explained below. The function(5) is strongly monotone and the first derivative of the link
penalty function is

F ′
i (x) = d

dx
Fi(x) = ci + ην

(
σi

bi − x

)ν+1

. (6)

Let τi ≥ 0 denote the propagation delay on linki. SetF ′
i (0) = τi . Thenci = τi − ην(σi/bi)

ν+1. The
properties of the link penalty function(5) under light and heavy load are discussed in the following
section.

2.4. Behavior under light and heavy load

With reference to the link penalty function(5) we chooseη positive but small so that if a feasible
solution exists for which all flowsfi are small and all link utilizationsfi/bi are low—in which case the
system is said to be uniformly lightly loaded—then the penalty function(5) will yield routes that are in
agreement with OSPF routing where the propagation delays are the OSPF metrics of the links.

If the system is not uniformly lightly loaded then the penalty function enforces a distance from the
barrierbi . The parameterη determines when the barrier begins to dominate the initial linear behavior
of the penalty function. A larger value ofη causes the penalty function to rise earlier when the flow
approaches the barrier. The parameterν determines the behavior of the penalty function as it approaches
the barrier. A larger value ofν makes the penalty function steeper when the flow approaches the barrier.
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Eq. (6)shows that ifν is large and for some linki the entity

si

σi
= bi − fi

σi
,

becomes both small in the absolute sense, and also becomes the smallest among all the links, then the
dominating objective of the NLP becomes to increase that entity. We callsi/σi theweighted slackof link
i. Thus ifν is large then the NLP maximizes the minimal weighted slack, at least as long as that minimal
weighted slack is small. The magnitude of the minimal weighted slack depends onν. Even better: as
long asν is sufficiently large, the NLP attempts to perform a “lexicographic maximization” of all small
weighted slacks: first it maximizes the smallest weighted slack, then the next smallest, and so on.

The choice ofσi is of interest. For example, if we chooseσi = bi then we minimize the maximal
utilization, as long as that maximal utilization is large. An interesting situation also arises when allbi
(insofar positive) are large. In that case we can choose forσi an estimate of the standard deviation of the
instantaneous offered load to linki in the situation where the target load is somewhat close tobi . In that
case the weighted slack is the “distance” from the target flowfi to the bandwidthbi , measured in units
of standard deviations. Assuming a Central Limit Theorem, and assuming that the distance as defined
above is at least several standard deviations, then by maximizing the minimal weighted slack we are also
essentially minimizing the maximal probability that the offered load to a link is larger than its bandwidth.

Fig. 1 plots the penalty function(5) of a link i as a function of the link flowx. The link bandwidth
bi = 400,000 and the weightσi = bi/10 = 40,000. These values are related to the parameters of a
50-node network model[8] where the average link capacity is 190,689± 81,026 and the average flow
carried on a link is 95,265± 48,414.

With reference toFig. 1 plot (0) shows theM/M/1 penalty function using related parameters. Plots
(1)–(4) are for the penalty function(5). Plot (1) shows the effect ofτi = 0.5, η = 1 andν = 2. Plot (2)
shows the effect of increasingτi from 0.5 to 1.0. The parameterη determines when the barrierbi begins
to dominate the initial linear behavior of the penalty function. Plot (3) shows that the penalty function
begins to rise towards the barrier earlier whenη is increased from 1 to 10. The parameterν determines
the behavior of the penalty function as it approaches the barrierbi : increasingν increases the steepness
of the rise. Plot (4) shows the effect of increasingν from 2 to 5.

Fig. 1. Examples of the penalty function.
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2.5. A flow optimization model

Path identification and traffic distribution are the two most important processes involved in flow opti-
mization. A flow optimization model may be based on either a reactive scheme where path identification
and traffic distribution are computed simultaneously to achieve an optimal traffic flow allocation, or a
pre-planned model where path identification and traffic distribution are performed separately.

We present a flow optimization model which consists of three parts:

Path identification.Path sets are computed for each source–destination pair using a reactive method.
Path selection.The path set is partitioned to yield a set of active paths to carry the offered traffic and a
set of back-up paths for fault recovery or congestion avoidance.

Traffic distribution.The FD model is used to move the offered traffic from higher cost paths to lower
cost paths.

See[9] for a description of a flow optimization model based on a pre-planned path discovery model.

3. The FD algorithm

This section presents an implementation of the FD algorithm[2–4]which minimizes a convex objective
function and thus converges to a global optimum.

The algorithm executes in a loop where each iteration of the loop implements one step of the algo-
rithm. During each step the algorithm computes the current set of shortest (least cost) paths from all
sources to all destinations. An optimal amount of flow is diverted from the current set of LSPs to the
shortest paths. Those shortest paths that are not already in the LSP set are added to the LSP set, the
link costs are updated (the link costs have changed because the link flows have changed) and the next
step of the algorithm is executed. The loop continues until flow re-distribution achieves no further re-
duction in the objective function. A small worked example of the operation of the FD algorithm can be
found in[3].

3.1. The algorithm

In the MPLS context the FD algorithm incrementally improves the setP of LSPs and improves the
distribution of traffic over multiple paths inP from the same source to the same destination. Improving
Pmainly consists of adding paths that have, or are likely to have, lower cost than the existing paths from
the same source to the same destination. ImprovingP may involve discarding pathsP that are known
not to have positiveBP in any optimal solution, or are not likely to have such a positive flow. Discarding
non-promising paths is not necessary for convergence but significantly decreases the computational effort.

The algorithm executes in a loop. Each iteration of the loop implements one step which is identified
by a step indexk:

(1) Initialize. Setk = 0. For each linki set the link flowfi = 0. Compute the least cost pathP = Pe(m, n)

connecting each node pair(m, n). Set the target bandwidthBP = d(m,n). If necessary call statement
(6) to enforce a feasible solution. Initialize the path setP = ⋃

(m,n) Pe(m, n).
Statements (2)–(8) given below constitute the body of the loop.
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(2) For each linki compute the link costCLi = F ′
i (fi). For each pathP compute the route costCRP =∑

i∈LP C
L
i .

(3) Compute a feasible direction� = (∆P )P∈P and an improved path setP. The calculation of an
improved path set and a feasible direction is discussed inSection 3.2.

(4) Convergence test. If no feasible direction can be found then optimality has been achieved and the
algorithm halts. This stopping rule is theoretically correct but of no practical value. A practical
stopping rule is discussed inSection 3.4.

(5) Compute improved path flowsB. Compute a value ofx such thatBP := BP + x∆P yields a value
F(B) of the objective function which is a strict improvement over the value of the objective function
computed in the previous step, and in the direction� is optimal. This computation is called the “line
search” forx. The calculation ofx is discussed inSection 3.3. In qualitative terms: a very small
positivex value always gives an improvement. We increasex either until the objective function stops
decreasing, or until a path flowBP goes to zero in which case the pathP leaves the setP.

(6) Enforce a feasible solution. If the target bandwidthsB are not feasible then for each linki set
bi := αbi , whereα = maxi(1.05fi/bi). The solutionB is now feasible.2

(7) Compute improved link flows. For each linki computefi := fi + xδi , whereδi := ∑
P∈P(i) ∆P .

(8) Loop statement:k := k + 1 and go to statement 2.

3.2. Choosing a feasible direction

A feasible direction is a map� = (∆P )P∈P with the following properties:

• the traffic demandd(m,n) offered to each node pair(m, n) is constant therefore
∑

P∈P(m,n) ∆P = 0;
• an empty path cannot have its bandwidth allocation lowered so that ifBP = 0 then∆P ≥ 0;
• a feasible direction will lower the network cost so that

∑
P∈P∆PC

R
P < 0.

We present two methods for computing a feasible direction. The first method, the so-called global
method, may add paths to the setP. The second method, the so-called local method, does not add paths
to the setP: in fact it is likely to remove paths fromP.

3.2.1. The global method
Given a feasible solutionB and the current link costsCLi , compute the shortest pathPe(m, n) connecting

each source–destination (S–D) pair(m, n). There may be several such paths in which case a tie-breaking
mechanism is needed. This path may already be in the set of known pathsP(m,n) and have a positive flow
BPe(m,n) > 0. If the path is not inP(m,n) then it is added toP(m,n). For eachP ∈ P(m,n) compute

∆P =
{ −BP , P ∈ P(m,n) \ Pe(m, n),
d(m,n) − BP , P = Pe(m, n).

3.2.2. The local method
Given a feasible solutionB and the current link costsCLi and the route costsCRP , choose a subset
R(m,n) fromP(m,n) for each S–D pair(m, n) as follows: all routesP ∈ P(m,n) with BP > 0 are inR(m,n);
optionally some or all routesP ∈ P(m,n) that have the minimal value ofCRP for all P ∈ P(m,n) may be
included, even those withBP = 0; no other paths are included inR(m,n).

2 When the FD algorithm terminates thenα = 1 else the solutionB is not feasible.
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LetR = ⋃
(m,n)R(m,n) denote the set ofactivepaths.R includes the pathsP that haveBP > 0 and in

additionRmay contain some pathsP that, because of their low current cost compared with other active
paths from the same source to the same destination, are likely to be assigned a positiveBP .

LetR(m,n) = |R(m,n)| denote the number of active paths that connect nodem to n. Let

CS(m,n) =
∑

P∈R(m,n)
CRP .

For eachP ∈ R(m,n) compute

∆P = CS(m,n) − R(m,n)C
R
P . (7)

Thus if there are for example two routes from nodem to n thenEq. (7)will decrease the flow on the
more costly route and increase the flow on the cheaper route (at the same rate), and the rates of change
are proportional to the difference in route costs. The ideal situation would be that where all node pairs
(m, n) with two routes will reach their cross-over point where costs become equal at about the same time
(for about the same value ofx).

Reducing the size of the path setP substantially improves the performance of the FD algorithm. The
next section describes a method to quickly remove many paths fromP that are unlikely to belong to the
final optimal set of paths.

The local method: removing inferior paths. Given a feasible direction�, compute for each S–D pair
(m, n)

xRmax(m, n) = min
P∈R(m,n):∆P<0

BP

|∆P | , (8)

wherexRmax(m, n) = +∞ if ∆P = 0 for all P ∈ R(m,n). In the line search, ifx grows toxRmax(m, n)

then the flows on one or more of the routes inR(m,n) will decrease to zero, and that route would be
expelled fromP. This mechanism with high probability expels at most one route per iteration. We have
a mechanism to improve this.

Choose a parameterx̂ ≥ 0. For those S–D pairs(m, n) with xRmax(m, n) < x̂ we re-scale

∆P := ∆P

xRmax(m, n)

x̂
, (9)

for all P ∈ R(m,n). Compute

xRmax = min
(m,n)

xRmax(m, n),

using the values ofxRmax(m, n) computed inEq. (8)with the re-scaled� values as computed inEq. (9).
Now xRmax ≥ x̂ and if Eq. (9)is applied at least once thenxRmax = x̂. The result now is that no path inR
loses all its flow untilx increases toxRmax, and forx = xRmax a potentially large number of paths all lose
all their flow.

We proceed as follows: initializêx = 0 so no re-scaling occurs afterEq. (7)has computed a feasible
direction�. If Eqs. (11) and (12)below determinex = xmax = xRmax (i.e. the optimalx is one that causes
elimination of at least one route), calculate

x̂ = 2xRmax,
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for use in the next iteration of the FD algorithm. Else (if the optimal value ofx does not cause elimination
of any route) we set̂x = 0 for the next iteration of the FD algorithm. Once the correct set of paths has
been found,̂x is likely to remain at zero.

3.2.3. A mixed method
It is likely that in the optimal solution each S–D pair(m, n) will be connected by a small number of

pathsP ∈ P(m,n) and these paths will all have the same route costs. It is to be expected that after a while
the shortest path algorithm will keep returning paths from that small set. Once the algorithm is in this
situation the use of the local method seems preferable.

The local and global methods can be combined as follows. The FD algorithm initially iterates using
the global method until the shortest path algorithm finds no new paths.

The FD then alternates between the local and the global methods as follows: an iteration of the global
method is followed byk iterations of the local method(k ≥ 0) and then another iteration of the global
method. If that new iteration of the global method finds a new path, it is followed by zero iterations of
the local method. Otherwise, it is followed byk + 1 iterations of the local method.

The algorithm thus alternates between the global and local methods until the stopping rule inSection
3.4below is triggered.

3.3. The line search

In this section we compute a value ofx which yields an improved solution

BP (x) = BP + x∆P , (10)

for all P ∈ P. Define

xLmax = min
i:δi>0

si

δi
,

wherexLmax = +∞ if δi ≤ 0 for all i. If x grows toxLmax< ∞ then the slack on one or more links will be
equal to zero. Thus we have the constraintx < xLmax. Next define

xRmax = min
P :∆P<0

BP

|∆P | .

It is impossible that∆P ≥ 0 for all P . If x grows toxRmax then the flows on one or more routes inP will
decrease to zero. Thus we have the constraintx ≤ xRmax.

Setxmax = min(xLmax, x
R
max). With an abuse of notation, we wish to find a value ofx ∈ [0, xmax] which

minimizes

F(x) =
∑
i

Fi(fi + xδi).

Settingy = fi + xδi and taking derivatives we obtain

F (k)(x) =
(

d

dx

)(k)
F (x) =

∑
i

(δi)
k

(
d

dy

)(k)
Fi(y).
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Since the functionsFi(·) are strongly monotone, even derivatives ofF(x) are positive and odd derivatives
of F(x) are strictly increasing. If

xRmax< xLmax, (11)

thenxmax = xRmax. In that case, compute

F ′(xmax) = F (1)(xmax). (12)

If Eq. (11)holds andF ′(xmax) ≤ 0 thenxmax is the optimal value forx. In this case, in updating the
feasible solution, one or more routes have their flow reduced to zero and these routes may be removed
fromP.

If Eq. (11)does not hold, or if it holds butF ′(xmax) > 0 then we need to find the value ofx ∈ [0, xmax)

whereF ′(x) = 0. Because the even derivatives ofF(x) are positive we can use the Newton–Raphson
method[10] to find the value ofx.

3.4. The stopping rule

The algorithm requires a stopping rule to determine the iterationk when the algorithm has converged.
We can stop when either|F ′(xk+1) − F ′(xk)| or |xk+1 − xk| has been close to zero for some time in
which case further iterations will yield no improvement in the solution. We can use a combination of
these two criteria. Because even derivatives ofF(·) are positive, the sequence(xk)will become monotone
decreasing or increasing. It may be safe not to stop until the sequence has been monotone for some time
and one or both of the other conditions above is satisfied.

3.5. Comparing the local and global methods

3.5.1. The global method
The global method computes the shortest paths between all S–D pairs each time a new feasible direction

is calculated. The shortest path calculation has complexity O(N3) whereN is the number of nodes in the
network. After each shortest path calculation the global method needs to check if the shortest paths are
already in the setP.

The choice of direction can lead to convergence problems. For many S–D pairs there are, in the optimal
solution, several paths with equal costs and each path carries a significant flow. When close to the optimal
solution, one of these paths will have the least cost. The global method will move flow from the slightly
more costly path to the slightly less costly paths. With high likelihood, in the next iteration the previous
slightly more costly path has become the slightly less costly, and the direction of the transfer of flow is
reversed: the algorithm oscillates.

3.5.2. The local method
The local method for choosing a feasible direction has computational complexity O(R(m,n)) per S–D

pair (m, n).
Paths which are likely not to carry a flow in an optimal solution are removed from the set of active

flows by driving their flows to zero. If we had not used the refinement introduced inSection 3.2.2then
with near certainty the local method will remove one path per iteration or worse: not every iteration need
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to eliminate one such flow. If there were a large number of such flows this could, in the absence of the
above refinement, cause a major slow-down in the algorithm.

3.6. Implementation issues

Each time the global method is invoked it calculates the shortest paths connecting all S–D pairs and
checks whether the current set of shortest paths is already inP. These calculations are computationally
expensive. The shortest paths are computed using Floyd’s algorithm (see[11]) and the references therein
for a discussion of the relative merits of several well-known shortest path algorithms. Each pathP is
stored in a table which is accessed via a hash index computed over the link setLP .

4. An application

This section presents a numerical study of MPLS path selection in a model of a 100-node network
with 244 uni-directional links and one traffic class. The links are capacitated with 6,515,881 units of
bandwidth: the average link capacity is 26,704± 19,320 units of bandwidth. A total of 250,000 units of
flow are offered to the 9900 S–D pairs. A description of the model with link capacities and offered traffics
can be found at the URLhttp://www.cs.sun.ac.za/projects/COE/models.zip.

4.1. The choice of penalty function parameters

Fig. 2compares the link utilization distributions computed by the global FD method for several values
of the penalty function(5)parametersη andν. Given that the link utilization distribution (for the 100-node
model) is relatively insensitive to the values ofη andν, the results presented in the rest of this section are
for η = 1, ν = 2, τi = 1 andσi = bi/10.

4.2. The Kleinrock (K) versus the Bertsekas–Gallager (B–G) methods of FD

Two variants of the standard FD algorithm have appeared in the literature. Kleinrock’s implementation
[4] uses a line search to compute the optimal amount of flow to move, and flow is moved for all S–D pairs at

Fig. 2. Distribution of the link utilizationρ.

http://www.cs.sun.ac.za/projects/COE/models.zip
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Fig. 3. Commonality among the (a) paths and (b) path flows computed by the K and the B–G FD algorithms.

once. Bertsekas and Gallager[2] developed a variant of the FD algorithm which avoids a computationally
expensive line search and instead estimates the amount of flow to be moved—the flow is moved for one
S–D pair at a time. The main advantage of the B–G algorithm is that it is computationally less expensive
than Kleinrock’s algorithm and it computes better values for small moves near the optimal point where
Kleinrock’s algorithm can oscillate. Kershenbaum[3] developed a technique for scaling the link capacities
to enforce feasible solutions: we use this technique since it is effective and simpler than the search for
feasible solutions presented in[4].

Fig. 3 investigates the commonality among the active path sets found by the K and the B–G FD
algorithms. Consider a pathP that is present in both the K and the B–G path sets. LetFP andF ′

P denote
the flow on pathP when path set is computed using the K and the B–G FD algorithms respectively. If
|FP −F ′

P | < 0.05 then the pathP is said to be instrong agreementamong the K and B–G path sets, else
the pathP is said to be inweak agreement. Fig. 3shows that 73% of the paths are in strong agreement:
the flows on these paths are the same to within 5% in the K and B–G solutions. 12% of the paths are in
weak agreement. Kleinrock’s algorithm finds 1800 paths that do not occur in the B–G path set, but these
paths carry a trivial flow. Likewise six paths in the B–G path set do not occur in the K path set, but these
paths also carry a trivial flow. The additional routes with minimal flow discovered by Kleinrock’s method
can be useful as back-up routes.

We conclude that, for the 100-node model, the K and B–G FD algorithms discover equivalent path sets
once the trivial routes are discarded from the K path set. In the remainder of this section will therefore
use the B–G algorithm as the basis for our global and mixed FD algorithms. Note again that the optimal
paths sets are usually not unique: this matter is discussed inAppendix A.

4.3. The effect of the penalty function

We next investigate whether the global FD algorithm using the penalty function(5) succeeds in com-
puting a flow distribution which maximizes the minimum slacks of the network links. The calculation of
a set of link flows which maximizes the minimum slacks was formulated as a linear programming (LP)
problem and the optimal routes and route flows were extracted from the optimal link flows[12].

Fig. 4 investigates the commonality among the active path sets found by the FD and the LP methods.
51% of the paths are in strong agreement: the flows on these paths are the same to within 5% in the FD
and LP solutions. 18% of the paths are in weak agreement. 25% of the FD paths do not occur in the LP
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Fig. 4. Commonality among the (a) paths and (b) path flows computed by the FD and LP methods.

path set, but these paths carry only 7% of the flow in the FD model. 6% of the LP paths do not occur in
the FD path set, but these paths carry only 4% of the flow in the LP model. 89% of the flow is distributed
among paths that are present in both the LP and the FD path sets, and 80% of the flow is carried on paths
that are in strong agreement.

Fig. 5(a) compares the link utilization distributions computed by the FD and LP methods. The two
distributions are in good agreement though the LP method yields a few more under- and over-utilized links.

From our comparison of the LP and FD link and path flows we conclude that for the 100-node model
and for the parameter values being used, the LP and FD path sets are largely equivalent: the FD algorithm
using the penalty function(5) has succeeded in computing a flow distribution which maximizes the
minimum slacks of the network links.

4.4. The global versus mixed FD methods

We next compare the qualities of the active path sets as computed by the global and the mixed FD
methods. The global method requires some 15 s of CPU time on an AMD6 1.8 GHz processor to solve

Fig. 5. Distribution of the link utilizationρ computed by (a) the global FD and the LP methods (b) the global and the mixed FD
methods.
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the LSP design problem for the 100-node model; the mixed method requires some 10 s.Fig. 5(b) shows
that the global and mixed methods yield nearly the same link utilization distributions.

In the remainder of this section, the length of a path denotes the hop count of a path. Thenormalized
lengthof a path is the length of that path minus the length of the shortest path connecting the S–D pair
of that path.

The global method finds an optimal LSP set containing 10,502 routes. The average normalized route
length is 0.39 and the average LSP bandwidth is 23.8. The mixed method finds an optimal LSP set
containing 10,681 routes. The average normalized route length is 0.38 and the average LSP bandwidth is
23.4. The LSP sets have several attractive features. The LSPs overwhelmingly coincide with the shortest
routes connecting the S–D pairs. Most S–D pairs are connected by one or two LSPs. Some 95% of the
flow is assigned to the shortest LSPs.

Table 1shows the flow assigned ton-path connections wheren = 1,2,3,4 (a S–D pair is said to
have ann-path connection or a path multiplicity ofn if the pair is connected byn LSPs). For example
the second row ofTable 1shows that 584 S–D pairs are connected by two routes: the 1168 routes carry
12,193 units of flow which is 4.8% of the total flow carried by the network. Each of these routes carries
on average 10.4 units of flow. Each two path connection carries on average 20.8 units of flow. The global
method yields an average path multiplicity of 1.06. The mixed method yields an average path multiplicity
of 1.08.

Fig. 6 investigates the commonality among the active path sets found by the global and the mixed FD
methods.Fig. 6 shows that 84% of the paths are in strong agreement: the flows on these paths are the
same to within 5% in the global and the mixed solutions. 9% of the paths are in weak agreement. 3% of
the global paths do not occur in the mixed path set, but these paths carry a trivial flow. 4% of the mixed
paths do not occur in the global path set, but these paths carry a trivial flow. 99% of the flow is distributed
among paths that are present in both the global and the mixed path sets, and 95% of the flow is carried
on paths that are in strong agreement.

Table 1, Figs. 5(b) and 6confirm that the LSP sets computed by the global and mixed FD methods are
nearly equivalent. Given the good agreement between the solutions for the 100-node model as computed
by the global and mixed methods, the results presented in the rest of this section are computed by the
global method since this method, though less efficient than the mixed method, computes optimal as
opposed to near-optimal path sets.

Table 1
Path multiplicity

Path multiplicity S–D pairs S–D routes Flow % Flow/route Flow/S–D

Global method
1 9307 9307 237690 95.0 25.5 25.5
2 584 1168 12193 4.8 10.4 20.8
3 9 27 103 0.0 3.8 11.5

Mixed method
1 9141 9141 236466 94.5 25.8 25.8
2 738 1476 13457 5.3 9.1 18.2
3 20 60 220 0.0 3.6 11.0
4 1 4 8 0.0 2.0 8.3
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Fig. 6. Commonality among the (a) paths and (b) flows computed by the global and the mixed FD methods.

4.5. Back-up paths

MPLS-based recovery is intended to effect rapid and complete restoration of traffic affected by a fault
in an MPLS network[13]. Two recovery models have been proposed for MPLS networks: re-routing
which establishes recovery paths on demand, and protection switching which works with pre-established
recovery paths. IP re-routing is robust and frugal since no resources are pre-committed but is inherently
slower than protection switching which is intended to offer high reliability to premium services where
fault recovery takes place at the 100 ms time scale.

This section presents a simple model of protection switching in MPLS networks. The FD method is
used to find and capacitate a set of optimal LSPs which constitute the working (active, primary) LSPs.
Global repair is implemented by reserving a set of LSPs for use as pre-established recovery (back-up,
protection) paths. In many cases a working path and its protection counterpart are link disjoint to protect
against link failures.

The FD algorithm computes an active path set for the 100-node model consisting of 10,502 routes
carrying 249,987 units of flow. The algorithm identified 8609 routes to which flow was not assigned:
these routes are designated as back-up paths. These paths provide back-up for 50% of the S–D pairs
which offer 33% of the traffic to the network. 12% of the back-up paths are link disjoint with their
working counterparts.

A back-up path should be provided for each S–D pair. In[9] we describe theK shortest path (KSP)
method for computing a set of link disjoint paths connecting each S–D pair. A setQ of back-up paths
that covers all the S–D pairs is found by taking the union of the setPback-up of back-up paths discov-
ered by the FD algorithm and the setPKSP of KSP paths with the setPactive of active paths removed.
Thus

Q = Pback-up ∪ (PKSP \ Pactive).

The combined path sets yield a total of|Q| = 18,349 back-up paths.
Fig. 7(a) presents the distributions of the normalized lengths of the active paths and the back-up paths.

Most of the active paths are of normalized length 0 and are thus the shortest paths between their respective
S–D pairs. This implies that the active paths make efficient use of the link bandwidth. Although many of
the back-up paths have a normalized length 0, some of the back-up paths have a large normalized length
and do not make efficient use of the link bandwidth.
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Fig. 7. (a) Normalized lengths of active and back-up paths; (b) flows on failed routes.

The most active link—though not the most heavily utilized link—in the 100-node network carries 1393
routes (13% of the network routes) and 21,228 units of flow (8% of the network flow). The failure of
this link is modeled by setting the cost of this link to a very large positive number.Fig. 7(b) presents the
distribution of the flow on the failed routes. The FD algorithm is then executed with the back-up path
setQ as input. The FD algorithm can assign flow to the back-up paths. However, the algorithm may
determine that some back-up paths are not optimal and in this case the algorithm will find and use new
paths.

Fig. 8 compares the performance of the path sets before and after the link failed.Fig. 8(a) shows
that 62% of the routes that were present before the link failed remain in use after the link failed.
2361 routes were dropped: the dropped routes include the 1393 failed routes that passed through the
failed link as well as other (discarded) routes that are no longer used once the flow was optimally di-

Fig. 8. Commonality among the (a) paths and (b) flows after a heavily utilized link has failed and the back-up paths are deployed.
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verted to avoid the failed link. 2722 new routes were used to carry the diverted flow: 1296 of these
routes are back-up routes and 1453 are new routes. Many of the back-up routes were therefore not
used.

Fig. 8(b) shows that 73% of the route flows are in strong agreement before and after the link failed:
the flows on these routes are, to within 5%, undisturbed by the link failure. 4% of the routes are in
weak agreement: their flows have changed by more than 5%. 31,567 units of flow were moved from the
dropped routes: 21,228 units of flow were moved from the failed routes and 10,339 from the discarded
routes. 32,296 units of flow were moved to back-up paths and to newly discovered paths. Of this amount,
17,400 units of flow were assigned to the back-up routes and 14,896 units of flow were assigned to new
routes.

5. Conclusion

This paper considers the problem of optimal path selection in MPLS networks. The problem is formu-
lated as the minimization of a non-linear objective function which under light load simplifies to OSPF
routing with link metrics equal to the link propagation delays, and under heavy load minimizes the prob-
ability that a transmission link has an instantaneous offered load larger than its bandwidth. We present an
efficient algorithm based on the FD method to find the optimal paths and to assign optimal bandwidths
to these paths. The algorithm also discovers a set of back-up paths for carrying the traffic of failed or
congested paths. The algorithm is applied to compute optimal LSPs for a 100-node network carrying a
single traffic class. We show that the FD algorithm, using the given objective function, computes a flow
distribution that is consistent with the goal of maximizing the minimum slacks on the network links. We
investigate several variants of the FD algorithm and show that they compute near identical flows. Finally
we investigate the utility of the back-up paths. A heavily utilized link carrying some 1400 routes fails:
the back-up paths are activated and we compare the performance of the path sets before and after the
back-up paths are deployed.
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Appendix A. Path sets and route degeneracy

The optimal solutionB computed by the FD algorithm is not unique. For example consider the network
[1] presented inFig. A.1 where traffic is offered from nodes 1 and 2 to node 6: the traffic demands are
d(1,6) = 0.5 andd(2,6) = 1.5. All links have capacitybi = 2 and have the same propagation delay and the
same weight factor. The optimal link flows are

f(1,3) = 0.5, f(2,3) = 1.5, f(3,4) = 1.0, f(3,5) = 1.0, f(4,6) = 1.0, f(5,6) = 1.0.
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Fig. A.1. The “Fish” network.

Let fP denote the flow on pathP . We can assign any flowx where 0≤ x ≤ 0.5 to path (1, 3, 4, 6)
whereupon the flows assigned to other routes are

f(1,3,4,6) = z, f(1,3,5,6) = 0.5 − z, f(2,3,4,6) = 1.0 − z, f(2,3,5,6) = 0.5 + z.

It is probably an advantage for a S–D pair to have two paths rather than one path. Having four paths rather
than three is probably a disadvantage. Operational requirements may prefer a particular value ofz. Thus
z = 0 and 0.5 will reduce the number of paths from 4 to 3. The FD algorithm yieldsz = 0.25 which
assigns two paths from each of nodes 1 and 2 to node 6 with equal bandwidth. From the point of view of
robustness under traffic forecast error, this may be the preferred solution.

Given the link flows, we need methods to compute not only a set of paths and a set of path flows
consistent with the link flows, but we also need criteria to determine which set of paths and path flows are
superior, and we need mechanisms to find optimal (according to those criteria) path sets and path flows.

References

[1] Consulthttp://www.ietf.orgfor MPLS RFC and Draft Documents such as RFC 3031 (MPLS Architecture), RFC 3036
(LDP Specifications), RFC 2702 (Requirements for Traffic Engineering over MPLS).

[2] D. Bertsekas, R. Gallager, Data Networks, 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1992.
[3] A. Kershenbaum, Telecommunication Design Algorithms, McGraw-Hill, New York, 1993.
[4] L. Kleinrock, Queueing System, Vol. 2: Computer Applications, Wiley, New York, 1976.
[5] S. Floyd, V. Jacobson, Random early detection gateways for congestion avoidance, IEEE/ACM Trans. Network. 1 (4) (1993)

397–413.
[6] T.J. Ott, T.V. Lakshman, L.H. Wong, SRED: stabilized RED, in: Proceedings of the IEEE INFOCOM’99, 1999,

pp. 1346–1355.
[7] Traffic Engineering and QoS Methods for IP-, ATM- and TDM-based Multiservice Networks.txt.http://www.ietf.org/

internet-drafts/draft-ietf-tewg-qos-routing-04.txt.
[8] C. Villamizar, http://brookfield.ans.net/omp/random-test-cases.html.
[9] A.B. Bagula, A.E. Krzesinski, Traffic engineering label switched paths in IP networks using a pre-planned flow optimization

model, in: Proceedings of the Ninth International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS’2001), Cincinnati, USA, August 2001, pp. 70–77.

[10] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C, 2nd ed., Cambridge University Press,
Cambridge, 1992.

[11] R. Bhandari, Survivable Networks: Algorithms for Diverse Routing, Kluwer Academic Publishers, Dordrecht, 2001.
[12] T. Carpenter, K.R. Krishnan, D. Shallcross, Enhancements to traffic engineering for multi protocol label switching, in:

Proceedings of the ITC17, Salvador, Brazil, September 2001.
[13] V. Sharma, et al., Framework for MPLS-based recovery. draft-ietf-mpls-recovery-frmwrk-03.txt.

http://www.ietf.org
http://www.ietf.org/internet-drafts/draft-ietf-tewg-qos-routing-04.txt
http://www.ietf.org/internet-drafts/draft-ietf-tewg-qos-routing-04.txt
http://brookfield.ans.net/omp/random-test-cases.html


152 J.E. Burns et al. / Performance Evaluation 52 (2003) 133–152

James E. Burns is a Research Scientist in Applied Research at Telcordia Technologies. He is an ac-
knowledged expert in distributed computing systems, especially in regard to self-stabilizing systems, a
specialized area within fault tolerance. He has been involved in developing and simulating protocols for
new and evolving areas, with an emphasis on next generation networks. An important part of this work
is the analysis of live network traffic in order to understand the complex interactions of different protocol
mixes over the Internet. Recently, Dr. Burns has investigated the design and practical use of multicasting
protocols for specialized applications. Degrees: BS, Mathematics, California Institute of Technology;
MBIS, Business Information Systems, Georgia State University; MS, Georgia Institute of Technology;
Ph.D., Information and Computer Science, Georgia Institute of Technology.

Teunis J. Ott (Teun) is Professor in Computer Science at the New Jersey Institute of Technology. Prior
to joining NJIT in 2001 he was for 23 years MTS, Supervisor, Director, and Senior Scientist at Bell
Laboratories, Bellcore, and Telcordia.
In the late 1970s and 1980s Teun published extensively in Queueing Theory and Applied Probability.
Then he switched to computer networking. For the readership of this journal his best known publication
is an 1996 unpublished paper with Joop Kemperman and Matt Mathis that established the Square Root
Formula for TCP (http://web.njit.edu/∼ott/Papers/index.html, etc.). Teun has six patents in the area of
routing, transport and control in IP and ATM, etc.

Anthony E. Krzesinski obtained the M.Sc. from the University of Cape Town and the Ph.D. from
Cambridge University, England. In 1972, he joined the Shell Research Laboratory in Amsterdam where
he worked on the development of mathematical models to predict the performance of computer systems.
In 1975, he joined the Department of Computer Science at University of Stellenbosch. In 1985, he was
appointed as Professor of Computer Science at the University of Stellenbosch. His research interests
centre on the performance evaluation of telecommunication networks.

Karen E. Müller holds the B.Sc. in Mathematics and Computer Science, the B.Sc. Honors in Computer
Science and the Higher Education Diploma all from the University of Stellenbosch. She is currently
completing her M.Sc. in Computer Science at the University of Stellenbosch.

http://web.njit.edu/~ott/Papers/index.html

	Path selection and bandwidth allocation in MPLS networks
	Introduction
	The model
	Paths and path bandwidths
	Feasibility and optimality
	The objective function
	Behavior under light and heavy load
	A flow optimization model

	The FD algorithm
	The algorithm
	Choosing a feasible direction
	The global method
	The local method
	A mixed method

	The line search
	The stopping rule
	Comparing the local and global methods
	The global method
	The local method

	Implementation issues

	An application
	The choice of penalty function parameters
	The Kleinrock (K) versus the Bertsekas-Gallager (B-G) methods of FD
	The effect of the penalty function
	The global versus mixed FD methods
	Back-up paths

	Conclusion
	Acknowledgements
	Path sets and route degeneracy
	References


